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Abstract

The Boris integration scheme, familiar in plasma simulation, is modified

to use a spatial variable as the independent variable. This is important for

beam simulations, where using the distance along the beam axis as the inde-

pendent variable simplifies particle tracking through a beamline. The modi-

fied Boris scheme is second-order accurate, requires only one force calculation

per particle per step, and preserves phase space structure more accurately

than a Runge-Kutta integration scheme. The new scheme is implemented in

the ICOOL code for simulation of muon cooling. Two ICOOL simulations

demonstrate the advantages of the Boris integrator: (i) for a single particle
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moving through a uniform solenoid field, the Boris scheme improved conser-

vation of perpendicular momentum more than two orders of magnitude over

the Runge-Kutta, and (ii) for a simulation with 2500 particles and a beam-

line based on the Brookhaven Study 2, the overall code speed with the Boris

integrator improved a factor of three over the Runge-Kutta.
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A popular integration scheme in plasma physics codes is the Boris integration scheme [1].

The Boris integrator is second-order accurate, requires only one force evaluation per step,

compared to four for a standard, fourth-order Runge-Kutta (RK) scheme [2], and it preserves

phase space structure more accurately than an RK integrator. Although it is only second-

order accurate, because of the decrease in the number of required force evaluations and the

increase in phase space accuracy, the Boris scheme can be much faster for many applications.

However, beam physics simulations have not taken advantage of the Boris scheme because

it uses time as the independent variable, while in beam physics simulation, the spatial

coordinate along the beam axis is more often the independent variable since that makes

matching spatial boundary conditions in the magnetic lattice easier. The aim of this paper

is to describe a modified Boris scheme that uses a spatial independent variable, making it

suitable for beam physics codes. We first describe the theory of the modified Boris scheme,

and then discuss the improvement resulting from implementing this scheme in the beam

simulation code, ICOOL [3]. In ICOOL, momentum conservation was improved two orders

of magnitude for integration of a single particle through a uniform solenoid field and overall

code speed was improved by a factor of three for a simulation with 2500 particles and a

beamline based on Brookhaven Study 2 [4].

Accurate simulation of muon cooling is important to the Muon Collider Collaboration to

help decide between many different design proposals for a muon collider [5]. ICOOL is one

of the main tools for such simulation, and speeding up the code allows more rapid progress

in collider design and optimization. ICOOL has many features that make it a uniquely

important tool to the Muon Collider Collaboration, including sophisticated modeling of

muons interacting with materials, which allows users to study ionization beam cooling (the

most widely-proposed method of creating muon beams of high enough luminosity for a

collider). Further, ICOOL has many analytic field options, making it easy to create a

field of any specification. Decreasing the runtime of an ICOOL simulation will let users

complete their analysis more quickly and study a wider range of design options. Using

the Runge-Kutta integrator, ICOOL spends a large fraction of run time in the particle
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integration subroutines, so implementing a more efficient integrator is one way to improve

code performance.

The motivation for developing the spatial Boris scheme comes from relativity and formal

Hamiltonian theory. Both of these fields give formal methods for exchanging spatial and

temporal dimensions. We begin by writing the momentum evolution equations, but substi-

tuting the energy evolution equation for the variable we want to become the independent

variable (z in this paper):

dpx
dt

= q(Ex + vyBz − vzBy) (1)

dpy
dt

= q(Ey + vzBx − vxBz) (2)

d(U/c)

dt
= q(Exvx + Eyvy + Ezvz) (3)

where p2
z = (U/c)2−p2

x−p2
y−m2c2 is now the energy-like quantity (MKS units). Interactions

with material in the lattice, including stochastic effects, are not included here. In the ICOOL

code, the algorithm for modeling such processes is independent of the particle integration

scheme. One exchanges z for t on the left-hand side by multiplying through by 1/vz:

dpx
dz

=
1

vz

dpx
dt

= q
(
Ex
vz

+
vyBz

vz
−By

)
(4)

dpy
dz

=
1

vz

dpy
dt

= q
(
Ey
vz
− vxBz

vz
+Bx

)
(5)

dU/c

dz
=

1

vz

dU/c

dt
= q

(
vxEx
vzc

+
vyEy
vzc

+
Ez
c

)
. (6)

Exchanging vz for pz on the right-hand side, one can write this as a matrix equation, splitting

into terms that involve pz and those that do not:

d

dz


px

py

U/c

 =
q

pz


0 Bz Ex/c

−Bz 0 Ey/c

Ex/c Ey/c 0




px

py

U/c

+ q


−By

Bx

Ez/c

 (7)

We define

w =


px

py

U/c

 , (8)
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b = q


−By

Bx

Ez/c

 , (9)

and

M =
q

pz


0 Bz Ex/c

−Bz 0 Ey/c

Ex/c Ey/c 0

 (10)

so that Eq. 7 can be written

dw

dz
= Mw + b. (11)

The equation for the evolution of the generalized particle position, s, can be written:

ds

dz
=
w

pz
, (12)

where s = [x, y, ct]. Equations 11 and 12 are the equations one needs to advance in the

numerical integration scheme.

The goal is to find a scheme that will advance these two sets of equations with second-

order accuracy while requiring only one force evaluation per step. One can leapfrog [6]

the advance of the generalized positions (Eq. 12) with the generalized momenta (Eq. 11).

This means advancing the positions one-half a step, advancing the momenta a full step,

and advancing the positions half a step. In this scheme, one assumes that the momenta are

constant when advancing the positions and that the positions are constant when advancing

the momenta. This will be second-order accurate so long as each piece is at least second-

order accurate. The integration of the positions is exact assuming constant momenta, so

one only must find a way to integrate the momentum equation to second-order accuracy. As

with the temporal Boris scheme, the approach here will be to further split the advance of

Eq. 11 in a leapfrog way: (i) advance w first by only the vector term, b, for one-half a step,

(ii) advance by only the matrix term, M , a full step, then (iii) advance by the vector b a
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final one-half step. Because the positions are assumed constant in the momentum advance,

all the terms in b are constant, and so steps (i) and (iii) are exact. All that is left, then, is

to show step (ii) can be done to second-order accuracy. So long as the elements of M are

all constant during this step, a space-centered advance (i.e. using the average of w on the

right-hand side and solving the resulting implicit equation) is second-order accurate.

To show that M is constant, one needs to show that the coefficient pz is constant during

step (ii). Because M involves only the field components Bz, Ex, and Ey that do not directly

modify pz, one expects that pz will be constant. Formally, one can show that pz does not

change magnitude when operated on by M by considering:

dpz
dz

=
1

pz

(
U/c

dU/c

dz
− px

dpx
dz
− py

dpy
dz

)
. (13)

Using the equations of motion from Eq. 7 but including only the matrix term gives:

U/c
dU/c

dz
= U/c

[
q

pz

(
Expx
c

+
Eypy
c

)]
(14)

px
dpx
dz

= px

[
q

pz

(
Bzpy +

ExU

c2

)]

py
dpy
dz

= py

[
q

pz

(
−Bzpx +

EyU

c2

)]
.

Substituting into Eq. 13 yields (for the matrix term alone):

dpz
dz

= 0. (15)

Thus all change in the magnitude of pz is due to the vector b. This means that for a step

involving only the matrix term, the elements of the matrix are constant, and a space-centered

advance will be second-order accurate.

Using the space-centered advance scheme for step (ii) means that one must solve an

implicit equation. One uses the average w on the right-hand side of the equation:

w+ − w− = M

(
w+ + w−

2

)
∆z, (16)

where w− is the vector before the matrix operation, and w+ is the vector after. Solving for

w+ gives
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w+ =
(
I −M∆z

2

)−1 (
I +M

∆z

2

)
w−. (17)

To calculate (I −M∆z/2)−1, one needs the eigenvalues of M . The eigenvalues of M are

λ = 0,±i q
pz

√
B2
z − E2

x − E2
y = 0,±iλ̂. (18)

In the corresponding basis of eigenvectors, this leads to

(
I −M∆z

2

)−1

=


1 0 0

0 1+iλ̂∆z/2

1+λ̂2∆z2/4
0

0 0 1−iλ̂∆z/2

1+λ̂2∆z2/4

 . (19)

One can then write the matrix from Eq. 17 in a basis-independent way:

(
I −M∆z

2

)−1 (
I +M

∆z

2

)
= I +

∆z

1 + λ̂2∆z2/4
M +

∆z2/2

1 + λ̂2∆z2/4
M2. (20)

So one can advance from w− to w+ using Eq. 17 rewritten as

w+ = w− +
∆z

1 + λ̂2∆z2/4
Mw− +

∆z2/2

1 + λ̂2∆z2/4
M2w−. (21)

The full operator for advancing w− to w+ can be written out as:

w+ = w− +Rw−, (22)

where from Eq. 21:

R =
∆zM + ∆z2M2

2

1 + λ̂2∆z2

4

(23)

=
q∆z/pz

1 + q2∆z2

4p2
z

(
B2
z −

E2
x+E2

y

c2

)


q∆z
2pz

(
E2
x

c2
−B2

z

)
Bz + q∆z

2pz

ExEy
c2

Ex
c

+ q∆z
2pz

BzEy
c

−Bz + q∆z
2pz

ExEy
c2

q∆z
2pz

(
E2
y

c2
−B2

z

)
Ey
c
− q∆z

2pz
BzEx
c

Ex
c
− q∆z

2pz

BzEy
c

Ey
c

+ q∆z
2pz

BzEx
c

q∆z
2pz

(
E2
x

c2
+

E2
y

c2

)

 .

The final steps for the spatial Boris push to move from position zn to zn+1 are as follows:

i. Push the generalized positions one-half step (∆z/2) using the velocities at zn.

ii. Evaluate the fields at this mid-point time and position.
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iii. Push the generalized momenta vector, w, from wn to an intermediate state w− with a

half-step using only the vector b:

w− = wn +
∆z

2
b. (24)

iv. Evaluate pz at this point, plug into the matrix R, and advance w− to w+ with a full

spatial step of the matrix part of Eq 11:

w+ = w− +Rw−. (25)

v. Advance w+ to the final state wn+1 with a half-step using only the vector b:

wn+1 = w+ +
∆z

2
b. (26)

vi. Push the generalized positions one-half step using the velocities at zn+1.

The above steps require only one evaluation of the fields. In a traditional leap-frog scheme,

steps i) and vi) are combined, and the positions are then known one-half step off from the

momenta. By keeping steps i) and vi) separate, one knows the generalized positions and

momenta at the same spatial location at the end of a step.

Next we discuss the application of this scheme to two simulations using ICOOL. The first

simulation is of single-particle motion through a uniform solenoid and is meant to show the

improvement in preserving phase space structure using the Boris integrator. Because phase

space quantities like beam temperature and energy spread are important for determining

how well a neutrino factory or muon collider will perform, accurately modeling phase space

is important for simulations of muon beams. Runge-Kutta integration schemes are known

to do a poor job preserving phase space structures [7]. Because the modified Boris scheme

is based on operator splitting like a symplectic scheme, we expect it to do a much better job

at accurately preserving phase space.

To test this, we used the ICOOL code with a beamline consisting of a uniform, 7T

solenoid field and a beam with a z-momentum of 0.2GeV/c. We chose roughly 30 steps
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per period as the stepsize (for these parameters, the period is approximately 0.6m, and so

we choose a stepsize of 0.02m). Because typical ICOOL simulations run for a few thou-

sand steps, we chose to run the simulation 600m. In a uniform solenoid field total energy,

total momentum, and perpendicular momentum (p2
perp = p2

x + p2
y) are conserved. For the

parameters relevant to a muon beam (like those given above), the total energy and mo-

mentum are dominated by motion parallel to the magnetic field. This motion is force-free

and so is not sensitive to numerical integrator properties. Thus, we chose to examine the

perpendicular momentum. Figure 1 shows the comparison of the perpendicular momentum

for simulations using the modified Boris and the RK schemes. The simulation using the

modified Boris scheme conserves perpendicular momentum to better than 0.02%, while the

simulation using the RK scheme lost approximately 2.0% of the perpendicular momentum.

This represents an improvement of more than two orders of magnitude. This does not imply

ICOOL simulations using the RK integrator are incorrect; for a smaller stepsize (64 steps

per period), the RK integrator performs equally well. Rather, this example illustrates the

Boris scheme is more robust than the RK scheme with regard to properties like phase space

conservation.

For the second simulation, we wanted to study to overall speed improvement of the code

for a more realistic ICOOL simulation. We chose to use solenoid focusing lattices and a

beamline geometry based on a simplified version of Brookhaven Feasibility Study 2 [4]. The

objectives of Study 2 were to examine the possibility of upgrading the Brookhaven AGS

facility (a high-energy proton source) as the first element of a muon-based neutrino factory,

and to study the feasibility and cost of a high-performance version of such a machine.

Because of the significant cost of such a channel, a great deal of effort has been put into

attempts to minimize the length and required magnetic structure of the cooling channel,

while at the same time maintaining the cooling channel in order to provide the large neutrino

flux is required for the physics studies which would be done at such a facility. Therefore, a

rapid, accurate prediction of the performance of the cooling channel is a critical aspect of

the neutrino factory design process.
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The cooling channel works by passing the muon beam through chambers filled with

liquid hydrogen, leading to energy loss because the muons slow down. The muons are then

re-accelerated in the forward direction using RF cavities, thus leading to overall cooling of

the beam. The cooling rate is proportional to the rate of energy loss, but is counteracted by

Coulomb scattering events, both in the hydrogen and in metal foils which are an intrinsic

part of the cooling channel; the scattering tends to randomize the direction of the particles.

The evolution of the beam emittance depends on the balance between scattering events,

which are simulated using the Moliere model [8], and the energy loss in material, leading

to a minimum transverse emittance that can itself be reduced by focusing the beam more

tightly at the hydrogen. In addition, due to the strong focusing and large energy spread of

the beam, nonlinear effects of beam propagation and in the RF cavities used for bunching

and acceleration strongly affect the performance of the cooling channel.

To compare the different integration schemes, we chose to compare two quantities: beam

emittance and single-particle transverse orbits. Emittance is of the most interest scientifi-

cally, while single-particle orbits give a more direct measure of the integrator’s performance.

For the single-particle orbit measurements, we chose to suppress stochastic processes such as

Coloumb scattering and muon decay. This reduces disagreement between the particle orbits

from sources other than the integrator. In this example, the accuracy of the integration

is determined by the first-order-accurate solver for the energy loss, so to achieve the same

accuracy, the same step size is used for both schemes.

Figure 2 shows the comparison of the emittance for the two different integration schemes.

The solid line is the emittance from the simulation using the RK integrator, and the dashed

line is from the Boris integrator. These simulations used 2500 particles and the same stepsize

of approximately 1.0 cm to model 90 m of the cooling channel. The Boris integrator ran this

problem approximately three times faster. Figure 3 shows the percent difference between

the RK run and the Boris run. This plot is the dashed line. With 2500 particles, statistically

one can expect agreement only to within 1/
√

2500 ≈ a few percent. We expect the percent

error to grow as z increases because the emittance is decreasing throughout the calculation.
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The solid line is the percent difference between the RK run and another RK run with a

different random seed. Because the errors between the Boris scheme and the RK scheme are

of the order we expect from statistical arguments, and they are of the same order as errors

from the RK scheme run with different random seeds, we conclude that the Boris scheme

provides satisfactory results while running three times faster.

Figure 4 shows the comparison of the single-particle orbits for the two different integra-

tion schemes (random processes turned off). The orbits shown are at the end of the run

(approximately 10,000 steps into the simulation). Again, the solid line is simulation using

the RK integrator, and the dashed line is from the Boris integrator. Both runs had an RMS

difference of a few percent with a control run using the RK integrator and a stepsize 10

times smaller. Errors of this size are acceptable given that one is interested in calculating

emittance, and statistical and random errors in the emittance calculation were larger than

these errors.

In conclusion, we have adapted the temporal Boris integration scheme to use a spatial

variable as the independent variable. This makes the Boris scheme suitable for beam physics

simulations, where using a spatial step is easier for matching boundary conditions in the

magnetic lattice. The Boris scheme is second-order accurate and requires only one force

evaluation per step, making it more efficient for many applications than a Runge-Kutta

scheme. We implemented the new scheme in the muon tracking code, ICOOL. For a simu-

lation of single-particle motion in a uniform solenoid, the modified Boris scheme improved

perpendicular momentum conservation by more than two orders of magnitude. On simu-

lations typical in muon cooling (2500 particles), runs with the Boris integrator were three

times faster than runs with the RK integrator for similar accuracy.

Acknowledgments: The authors thank W. Fawley and R. Fernow for many suggestions

regarding this work.
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FIGURES

FIG. 1. The perpendicular momentum (pperp =
√
p2
x + p2

y), normalized to its initial value,

as a function of distance along a uniform solenoid channel. The solid line is from a simulation

using a Runge-Kutta integration scheme. The dashed line is from a simulation using the modified

Boris integration scheme. The simulation using the modified Boris scheme conserved perpendicular

momentum to better than 0.02%, more than two orders of magnitude better than the Runge-Kutta.
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FIG. 2. The emittance as a function of distance along the cooling channel for a simulation

with 2500 particles and using a beamline based on Brookhaven Study 2. The solid line is from a

simulation using a Runge-Kutta integration scheme. The dashed line is from a simulation using

the modified Boris integration scheme. The simulation using the Boris scheme ran this problem

three times faster.
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FIG. 3. The percent difference in emittance as a function of distance along the cooling channel.

The solid line is the difference between the simulation shown in Fig. 2 using the Runge-Kutta

scheme and another run with the Runge-Kutta scheme, but a different random seed. The dashed

line is the difference between the simulation using the Runge-Kutta scheme and the simulation

using the Boris scheme. These errors are of the same order, indicating that the Boris scheme

is giving results of approximately the same accuracy as the Runge-Kutta scheme. We expect the

percent error to grow as z increases because the emittance is decreasing throughout the calculation.
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FIG. 4. The transverse position, y, as a function of the distance along the cooling channel for

a single particle using the same beamline based on Study 2, but with stochastic processes turned

off. The solid line is a simulation using the Runge-Kutta scheme. The dashed line is a simulation

using the Boris scheme. For these simulations, random processes such as Coulomb scattering and

muon decay were turned off.
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